

Sustainability Assessment of Urban Systems

(ENV-461)

9: Multi-Criteria Analysis (MCA)

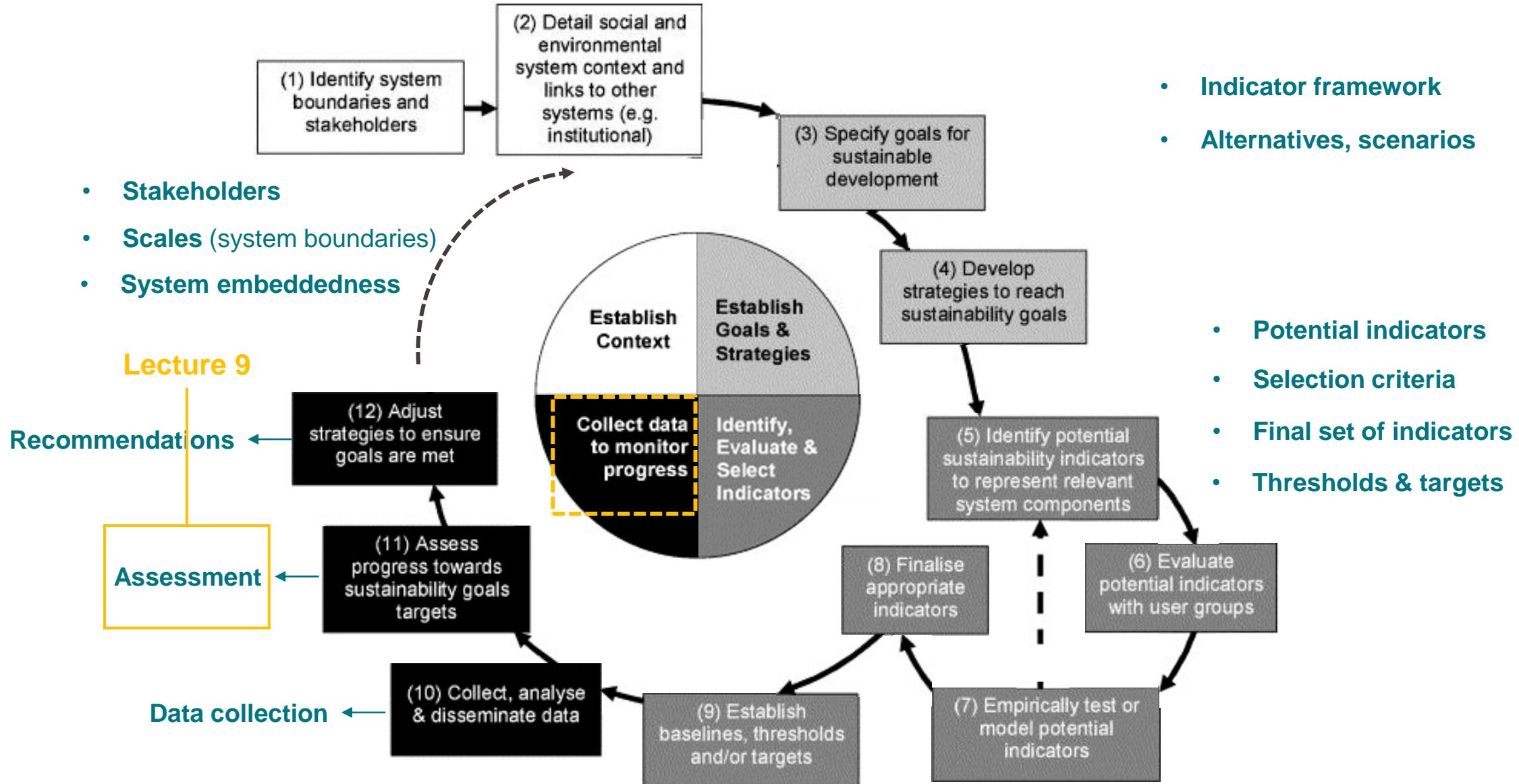
Lecturers:

Dr. Matthias Heinrich

Assistants:

Gloria Serra Coch, Ankita Singhvi, Giulia Frigo, Simon Ladino Cano, Hanbit Lee

Lecture content based on Albert M.S work


Program of the course

Lectures : BS 170 on Wednesdays, 13:15 – 16:00 (Lecture + Exercise)

n°	Date	Session	Milestones Project
1	19/02/2025	Introduction into sustainability and SA	
2	26/02/2025	Sustainability issues in urban systems	
3	05/03/2025	Key steps in SA #1: SSP, normative dimension, frameworks	Groups formed
4	12/03/2025	Key steps in SA #2: Systemic dimension	
5	19/03/2025	Key steps in SA #3: Participatory dimension	Submission - Outline 19.03
6	26/03/2025	Deriving indicators (1/2)	
7	02/04/2025	Deriving indicators (2/2)	
8	09/04/2025	Influence matrix	
9	16/04/2025	Multi-Criteria Analysis	
	23/04/2025	Easter break	
10	30/04/2025	Deriving policy recommendations	
11	07/05/2025	Working session : Poster preparation	
12	14/05/2025	Sustainability Assessment in practice Roundtable with stakeholders	
13	21/05/2025	Exam	
14	28/05/2025	Presentation of semester work_2	

* May be updated depending on the number of students enrolled

A chronological overview of the course

Barry Ness

Senior Lecturer, Docent

CONTACT DETAILS
Email: barry.ness@lucusus.lu.se

ECOLOGICAL ECONOMICS 60 (2007) 498–508

available at www.sciencedirect.com

SURVEY

Categorising tools for sustainability assessment

Barry Ness^{a,b,*}, Evelin Urbel-Piirsalu^{a,b,c,1}, Stefan Anderberg^d, Lennart Olsson^a

^aLund University Centre for Sustainability Studies (LUCSUS), PO Box 170, 221 00 Lund, Sweden
^bDepartment of Social and Economic Geography, Lund University, Sövegatan 10, Geocentrum 1, 223 62 Lund, Sweden
^cStockholm Environment Institute Tallinn Centre, Box 160, 10502 Tallinn, Estonia
^dInstitute of Geography, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark

ARTICLE INFO

Article history:
 Received 24 January 2006
 Accepted 31 July 2006
 Available online 18 September 2006

Keywords:
 Sustainability assessment
 Sustainability science
 Indicators
 Flow assessments
 Integrated assessment
 Impact assessment

1. Introduction

Sustainable development has been incorporated into many levels of society in recent years. The standard definition provided by the Brundtland Commission "to make development sustainable — to ensure that it meets the needs of the present without compromising the ability of future generations to meet their own needs" (WCED, 1987) is a starting point for most who set out to define the concept. The U.S. National Research Council (1999) argues that there are three important components of sustainable development: what is to be sustained, what is to be developed, and the intergenerational component. They identify three areas to be sustained, namely, nature, life-support systems and community. The group furthermore brings out the three ideas to be developed: people, society and economy. Lastly, the intergenerational component is critical because specific sustainability goals must explicitly express the time-horizon for which the goals are to be achieved.² Emerging from this structural backbone is the field of sustainability science. Kasemir et al. (2003) describe this research area as combining work in the area of environmental science with work in economic, social and development studies to better understand the complex dynamic interactions between environmental, social and economic issues.

But for the transition to sustainability, goals must be assessed. This has posed important challenges to the scientific community in providing efficient but reliable tools. As a response to these challenges, sustainability assessment has become a rapidly developing area. The numbers of tools that claim that they can be used for assessing sustainability have

* Corresponding author. Lund University Centre for Sustainability Studies (LUCSUS), PO Box 170, 221 00 Lund, Sweden. Tel.: +46 46 222 0512; fax: +46 46 222 0475.
 E-mail address: barry.ness@lucusus.lu.se (B. Ness).
¹ The senior authorship is shared by both authors.

0921-8009/\$ - see front matter © 2006 Elsevier B.V. All rights reserved.
 doi:10.1016/j.ecolecon.2006.07.023

Ness et al. (2007)

9

Assessing Urban Sustainability through Participatory Multi-Criteria Approaches (PMCA): An Updated Comparative Analysis

Albert Merino-Saum

9.1 Introduction

Participatory multi-criteria approaches (PMCA) have been increasingly applied over the last 30 years in sustainability assessments (SA) as an alternative approach to traditional monetary valuations and expert technical appraisals (Munda, 2004a; O'Connor, 2000; Proctor & Dreschler, 2006; Stagl, 2003; etc.). Like many other forms of sustainability appraisal (e.g., scenario-building, integrated assessment, mediated modeling), PMCA have been created and methodologically formalized in parallel with the advent of the participatory paradigm at the end of the twentieth century. They are frequently presented as suitable approaches when dealing with challenges such as complexity, uncertainty, and ambiguity in sustainability matters (De Marchi et al., 2000; Martínez-Alier et al., 1998; O'Connor et al., 1996; etc.). Nowadays, PMCA constitute a whole family of assessment approaches that share some core features, but are also differentiated from each other on several levels (conceptual, technical, procedural, etc.).

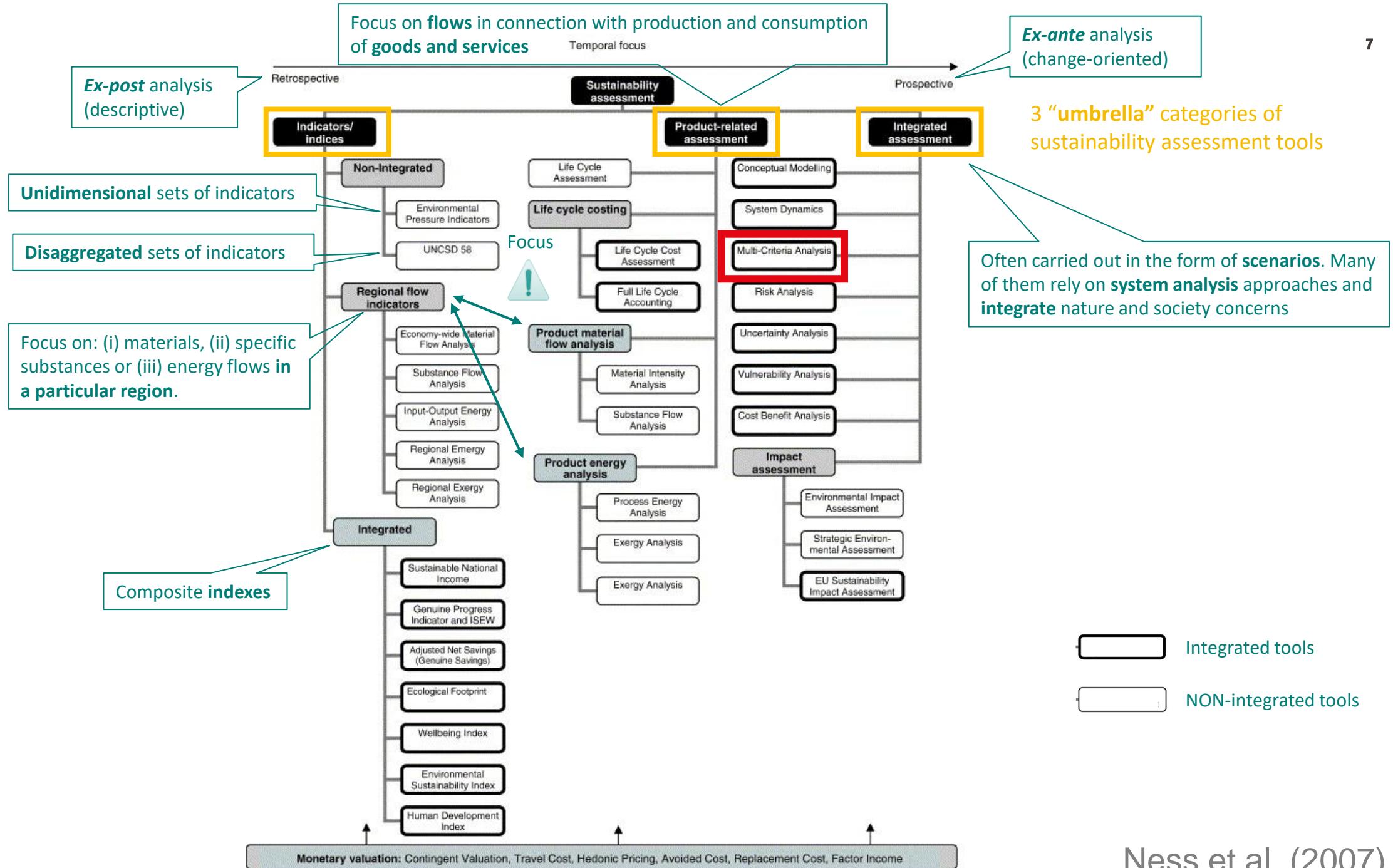
A comparative analysis like the one presented here seems scientifically pertinent for several reasons. First, it is by contrasting and exploring several PMCA that we may better understand their theoretical roots, their distinctive technical characteristics, as well as their respective weaknesses and strengths. Second, comparative analyses may also shed light on potential synergies between PMCA and thus support combined applications (which opens up new opportunities, since each PMCA focuses on one particular sustainability challenge). Finally, the present analysis may also pave the way for future research by specifying the most suitable approach taking epistemological standpoints, methodological concerns, and other contextual factors into account.

Previous comparative analyses may be found in either scientific or institutional literature (De Montis et al., 2000; Gerber et al., 2012; Omann, 2004; Proctor, 2009; Rauschmayer & Wittmer, 2006; Stagl, 2007; etc.). All these papers and reports deal with some of the approaches studied here (although none compares the four PMCA considered in this book chapter) and compare them with other more or less similar evaluative frameworks across varied criteria. Our analysis adds several novel insights

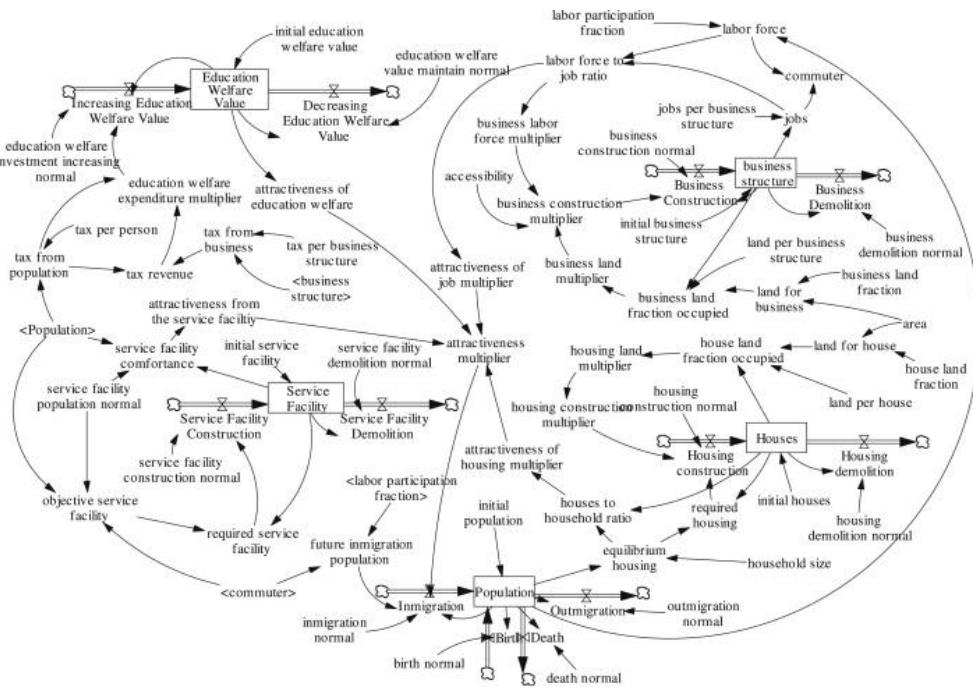
209

Downloaded from <https://www.cambridge.org/core>. Ecole Polytechnique Fédérale de Lausanne, on 30 Mar 2022 at 12:43:10, subject to the Cambridge Core terms of use, available at <https://www.cambridge.org/core/terms>. <https://doi.org/10.1017/9781108574334>

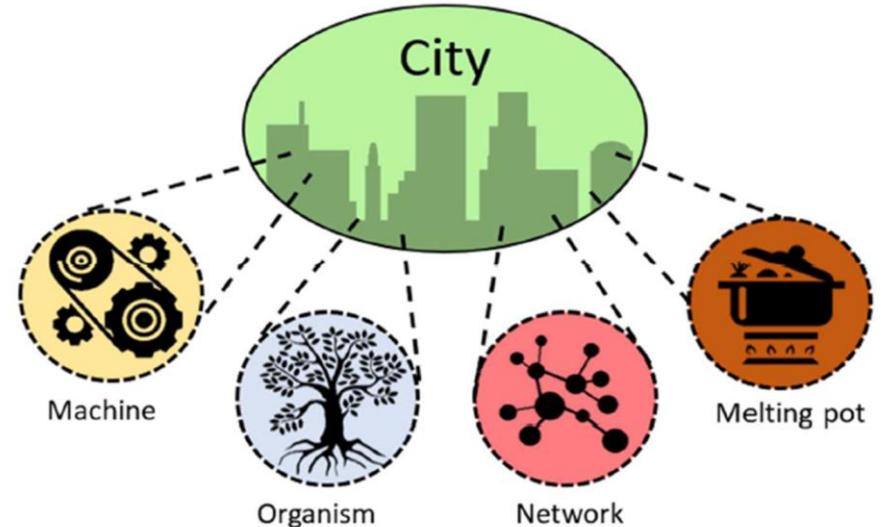
Merino-Saum (2020)


**Putting MCA into
context...**

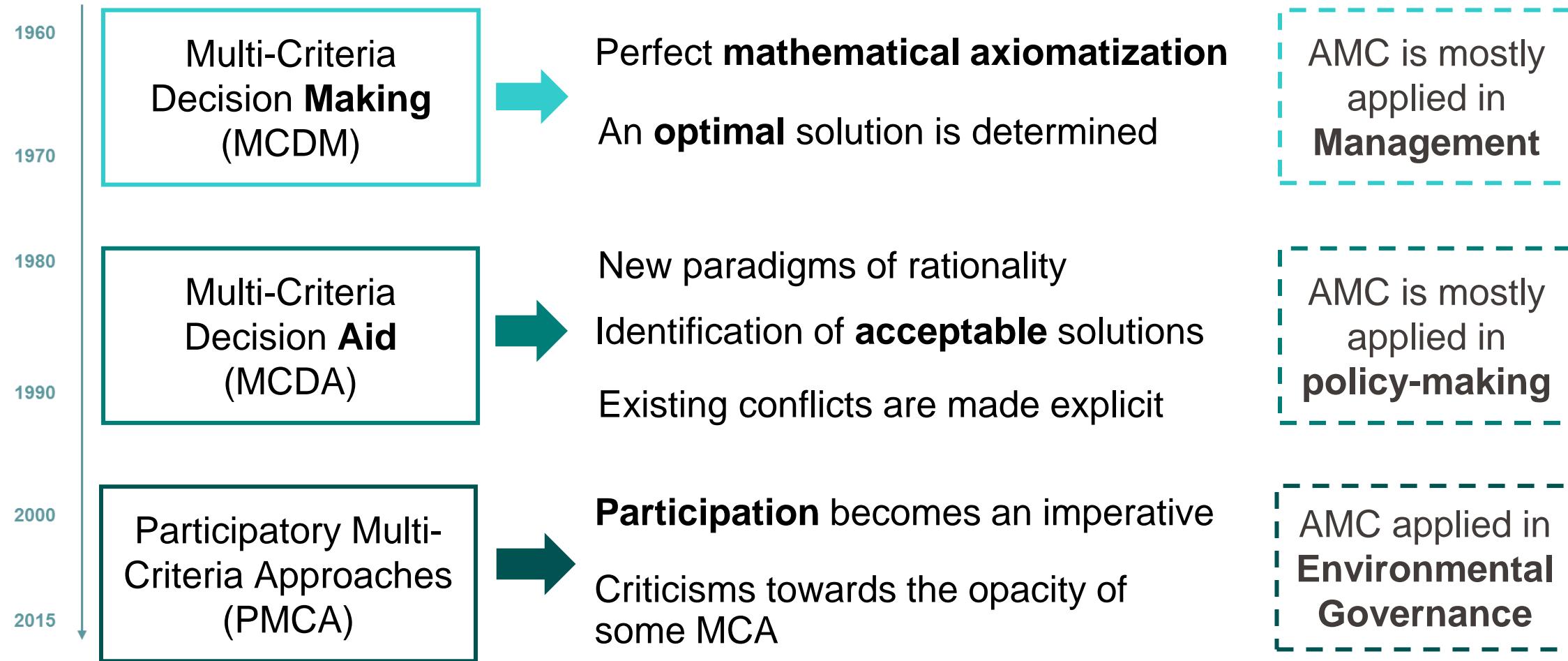
MCA: one tool among others...


The number of tools and approaches that claim that they can be used for assessing sustainability has rapidly grown in the last 20 years...

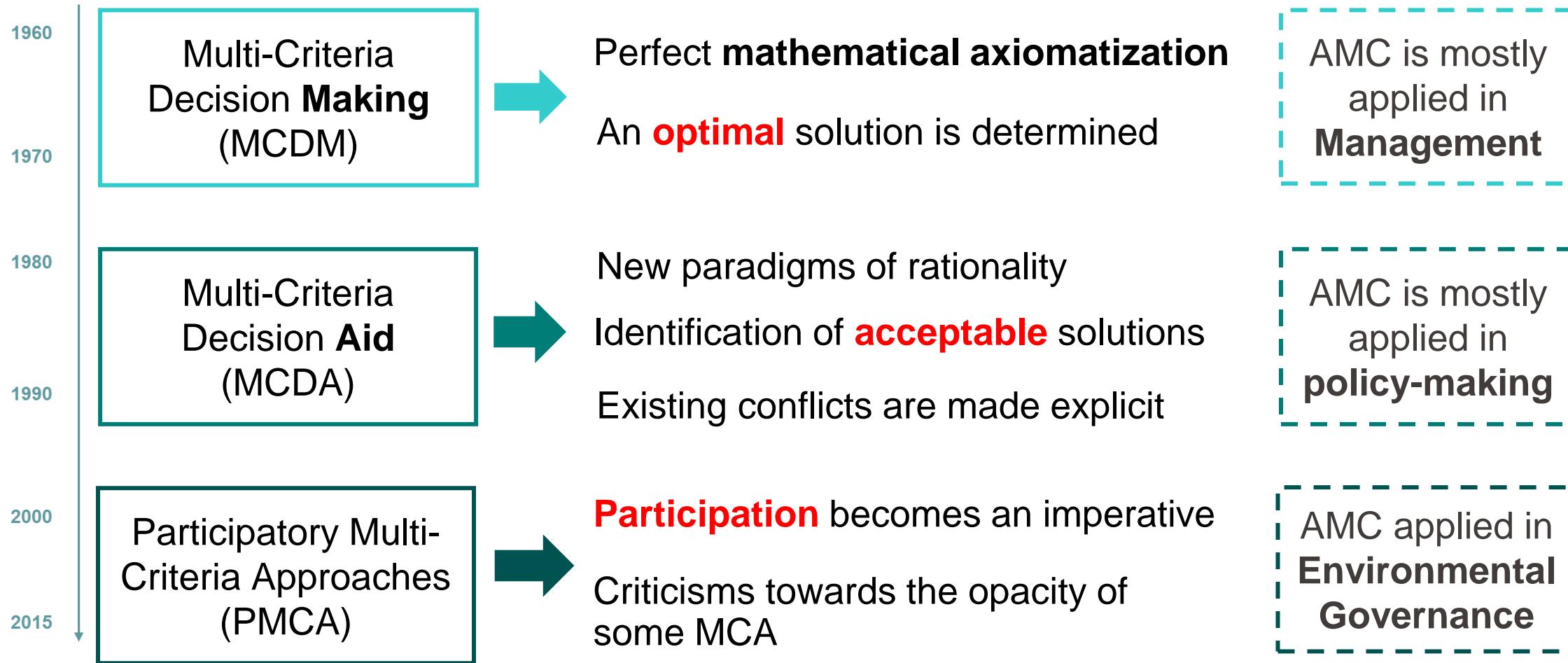
Risk Analysis	Contingent Valuation Method	Environmental Impact Assessment	Conceptual Modelling
Human Appropriation of Net Primary Production (HANPP)			
Vulnerability Analysis	Life Cycle Assessment (LCA)	Scenario Development & Analysis	Multi-Criteria Analysis (MCA)
Energy Analysis			
System Dynamics	Ecological Footprint		Exergy Analysis
		Cost-Benefit Analysis (CBA)	
Hedonic Pricing	Material Flow Analysis (MFA)		
		Travel Cost Method	
	Input-Output Analysis		



The overarching objective of MCA is the study of decision problems in which **several points of view (or evaluative criteria) must be simultaneously taken into consideration** (Roy & Vincke 1981)



(Park et al. 2020)



(Halla et al. 2020)

MCA: a (very brief) historical overview...

MCA: a (very brief) historical overview...

MCA: core elements

Several
alternatives

Performance
scores

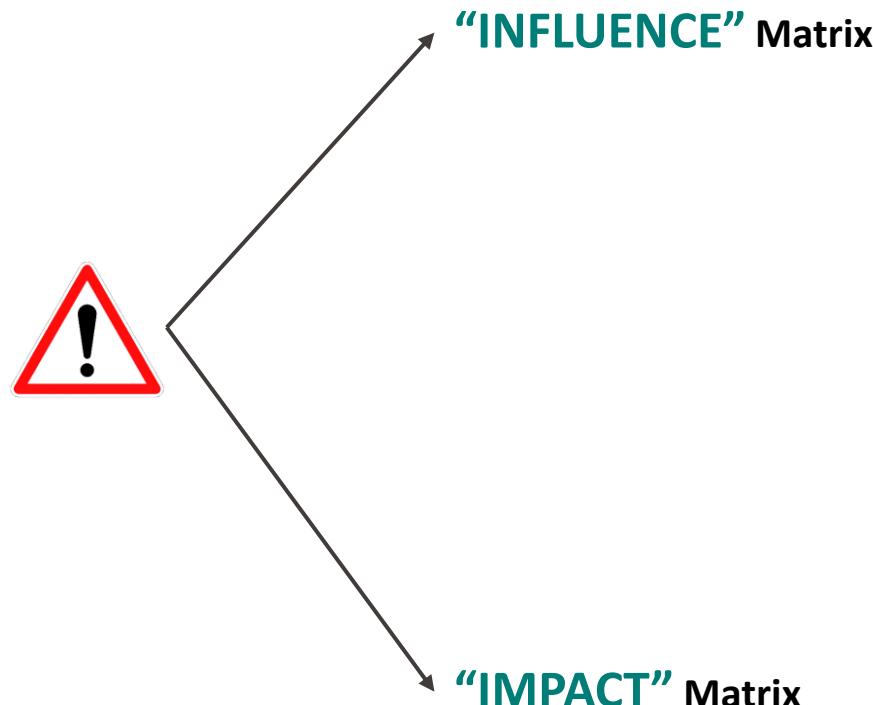
A finite set of
evaluative
criteria

Aggregative
procedure

(Martel & Rousseau 1993; Banville et al. 1998)

MCA: core elements – Impact matrix

A is a finite **set of options** $a_j (j=1,2,\dots,n)$


G is a finite **set of evaluative criteria seen as being pertinent $g_i (i=1,2,\dots,m)$,**

Criteria	Units	Options			
		$a_{j=1}$	$a_{j=2}$	(...)	$a_{j=n}$
$g_{i=1}$		$g_1(a_1)$	$g_1(a_2)$...	$g_1(a_n)$
$g_{i=2}$	
(...)	
$g_{i=m}$		$g_m(a_1)$	$g_m(a_2)$...	$g_m(a_n)$

Performance scores

Option a_1 is seen as being better than option a_2 according to criterion g_1 , when the performance score that a_1 gets for this criterion is higher than the performance score that a_2 gets for the same criterion; i.e. $g_i(a_1) > g_i(a_2)$.

MCA: core elements - Impact matrix

		Environmental aspects			Economic aspects			Social aspects		
		Indicator Env. 1	Indicator Env. 2	Indicator Env. 3	Indicator Econ. 1	Indicator Econ. 2	Indicator Econ. 3	Indicator Soc. 1	Indicator Soc. 2	Indicator Soc. 3
Environmental aspects	Indicator Env. 1	0	1	0	0	1	0	-2	1	0
	Indicator Env. 2	0	0	1	0	1	0	2	1	0
	Indicator Env. 3	1	1	0	1	0	-1	1	1	0
Economic aspects	Indi. Econ. 1	1	1	1	0	1	0	1	1	-1
	Ind. Econ. 2	-1	1	1	2	0	0	1	1	0
	Ind. Econ. 3	1	-1	1	2	0	1	0	0	0
Social aspects	Indicator Soc. 1	1	1	-2	0	0	0	1	1	0
	Indicator Soc. 2	2	2	2	1	0	0	2	1	1
	Indicator Soc. 3	1	1	1	1	1	0	2	1	0

		Options			
Criteria	Units	$a_{j=1}$	$a_{j=2}$	(...)	$a_{j=n}$
$g_{i=1}$		$g_1(a_1)$	$g_1(a_2)$...	$g_1(a_n)$
$g_{i=2}$	
(...)	
$g_{i=m}$		$g_m(a_1)$	$g_m(a_2)$...	$g_m(a_n)$

MCA: core elements – Impact matrix

Illustration 1: Windfarm location in Catalonia (Northern Spain).

Table 19
Multi-criteria impact matrix

Criteria	Units	Dir.	Options						
			CB-Pre	CB	ST	CBST	L	R	NP
Criteria	Owners' income	€/year	5	48,000	33,000	99,000	132,000	78,000	72,000
	Economic activity tax	€/year	5	~12,750	~15,470	~46,410	~61,880	~36,570	~33,750
	Construction tax	€	5	~61,990	~55,730	~96,520	~152,250	~81,890	~67,650
	Number of jobs		5	2	1	4	5	3	3
	Visual impact	km ²	6	76.570	71.465	276.550	348.015	220.400	163.290
	Forest lost	ha	6	8.4	8.1	6.6	14.7	3.9	2.6
	Avoided CO ₂ emissions	ton CO ₂ /year	5	4680	6010	19,740	25,750	14,740	13,760
	Noise	dB(A)	6	14.64	23.86	18.6	23.84	20.88	14.66
	Installed capacity	MW	5	13.6	16.5	49.5	66	39	36

Performance scores

MCA: core elements – Impact matrix

Illustration 2: Urban water management (Troina, Italy).

Table 1
Multicriteria impact matrix for the policy options

Criteria	Alternatives	Options							
		Business as usual	Mineral water	Mineral water + recreation	Information campaign	Implementation of the Galli law	Self-sufficiency	Compensation	Change irrigation structure in CT
Use of water	Moderate	More or less good	More or less good	Moderate	Good	Good	Moderate	Very good	
Returns	Moderate	Good	Good	Moderate	Moderate	Good	Moderate	Moderate	
Financial constraint	Very good	Moderate	Moderate	Very good	Very good	Moderate	Very good	Very bad	
Employment	Moderate	More or less good	Good	Moderate	Moderate	Moderate	Moderate	Moderate	
Community vulnerability	Very high	High	More or less high	More or less high	Very high	More or less high	High	Very high	
Community identity	Bad	Good	Good	Good	Bad	More or less good	Good	Bad	
Transparency	Very bad	Very bad	Very bad	Very good	Bad	More or less good	More or less bad	Bad	
Participation	Bad	Bad	Bad	More or less good	Bad	Moderate	Bad	Bad	
Precautionary principle	More or less good	More or less bad	More or less bad	More or less good	More or less good	Moderate	More or less good	Good	

Performance scores

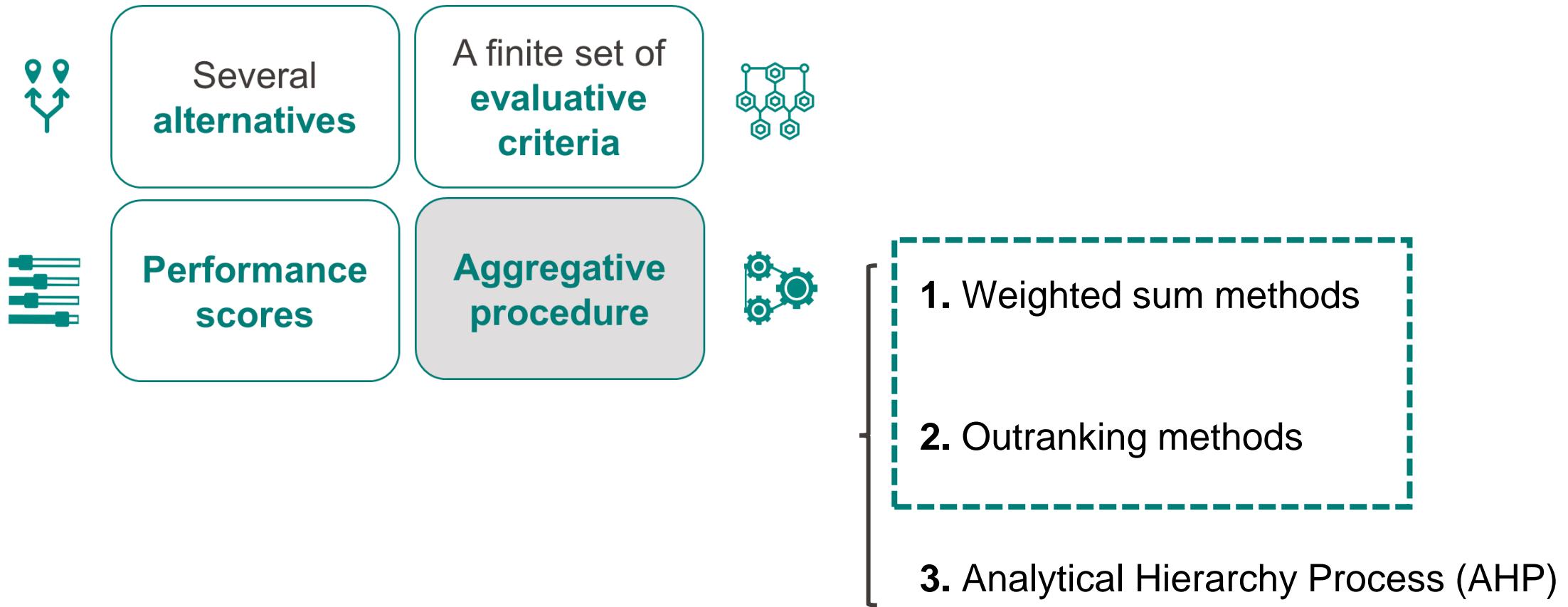
MCA as a way of life....

Disposable budget: 60€/trip

21

...We all face **complex problems in our current life** and we all tackle them (more or less explicitly) through a multi-criteria reasoning...!!

- Critical thresholds
- Lexicographic preferences
- Total commensurability

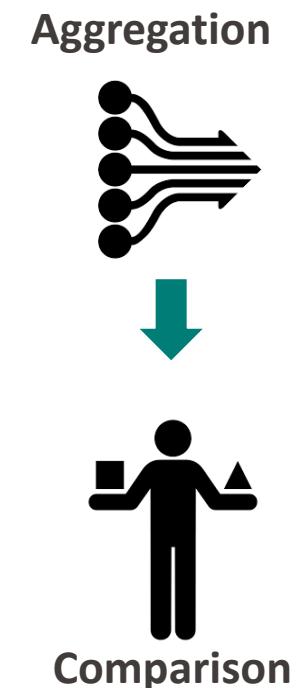

Travelling to Paris...

Options

Criteria	Units	Own car	Car sharing	Plane	Train	Bus
Economic costs	Euros	85 euros	40 euros	50 euros	79 euros	37 euros
➡ Carbon impact	kg eq. CO ₂	138.3 kg	46.11 kg	159.37 kg	20.5 kg	21.60 kg
➡ Time	Hours	5h 0	5h30	1h	3h 5	7h30
Comfort	Qualitative scale	Very high	High	Medium	High	Low
Social interactions (possibility of meeting people)	Subjective scale	7		3	+	3
Reliability	Probability of delay (subj. scale)	+		++	++	+
Possibility of working	Hours of work (estimation)	0h		30min	1h	4h
Fidelity programs	Ex: miles (Airfrance)	Not possible	Easy	Easy	Very easy	Not possible

Weighted sum methods

MCA: Aggregative procedures


Weighted sum methods

Weighted sum methods are particularly **straightforward** (Janssen & Munda 1999: 841; Dodgson et al. 2009: 25; etc.).

In weighted sum methods, all performance scores obtained by an option are aggregated and then integrated within an overall score.

The aggregation relies on **THREE STEPS**:

- (i) **Standardizing** performance scores;
- (ii) **Multiplying** such scores by their respective **weights**;
- (iii) **Adding** all the resulting scores.

Weighted sum methods

From a mathematical point of view, such a process implies to apply the following equation :

$$I_j = \sum_{i=1}^n w_i \cdot p_{ij}$$

Where:

I_j express the **overall value** associated to option j ;

w_i is the **weight** given to criterion i ;

p_{ij} signals the **normalized score** for option j according to criterion i ;

With $\sum_{i=1}^n w_i = 1$; $0 \leq w_i \leq 1$; and $i = 1, 2, \dots, n$.

Thanks to weighted sum methods, **all the options may be ranked and compared to each other**.

The best option is the one with the **highest normalized overall score**.

Weighted sum methods

Most frequent **Normalization techniques** (Saisana & Tarantola 2002; OECD 2003; Munda 2008):

1. “**Standard deviation from the mean**” (imposing a standard normal distribution):

$$\uparrow: \frac{\text{actual value} - \text{mean value}}{\text{standard deviation}}$$

$$\downarrow: - \left(\frac{\text{actual value} - \text{mean value}}{\text{standard deviation}} \right)$$

Positive (negative) values for a given city indicate above (below)-average performance

2. “**Distance from the group leader**” (it assigns 100 to the leading alternative while other alternatives are ranked as percentage points from the leader):

$$\uparrow: 100 \left(\frac{\text{actual value}}{\text{best value}} \right)$$

$$\downarrow: 100 \left(\frac{\text{best value}}{\text{actual value}} \right)$$

Weighted sum methods

3. “**Distance from the mean**” (the mean value is given 100, and alternatives receive scores depending on their distance from the mean):

$$\uparrow: 100 \left(\frac{\text{actual value}}{\text{mean value}} \right)$$

Values higher than 100 indicate above-average performance

$$\downarrow: 100 \left(1 - \frac{\text{actual value} - \text{mean value}}{\text{mean value}} \right)$$

4. “**Distance from the best and worst performers**” (positioning is in relation to the global maximum and minimum; the index takes values between 0 -laggard- and 100 -leader-):

$$100 \left(\frac{\text{actual value} - \text{worst value}}{\text{best value} - \text{worst value}} \right)$$

Weighted sum methods

Standardization

- 1. "Standard deviation from the mean"
- 2. "Distance from the group leader"
- 3. "Distance from the mean"
- 4. "Distance from the best and worst performers"

Travelling to Paris...		Options				
Criteria	Units	Own car	Car sharing	Plane	Train	Bus
Economic costs	Euros	85 euros	40 euros	50 euros	79 euros	37 euros
Carbon impact	kg eq. CO ₂	138.33 kg	46.11 kg	159.37 kg	20.26 kg	21.60 kg
Time	Hours	5h30	5h30	1h	3h15	7h30
Comfort	Qualitative scale	Very high	High	Medium	High	Low
Social interactions (possibility of meeting people)	Subjective scale	1	7	3	5	3
Reliability	Probability of delay (subj. scale)	+	+	++	+++	+
Possibility of working	Hours of work (estimation)	0h	0h	30min	3h	4h
Fidelity programs	Ex: miles (Airfrance)	Not possible	Easy	Easy	Very easy	Not possible

Weighted sum methods

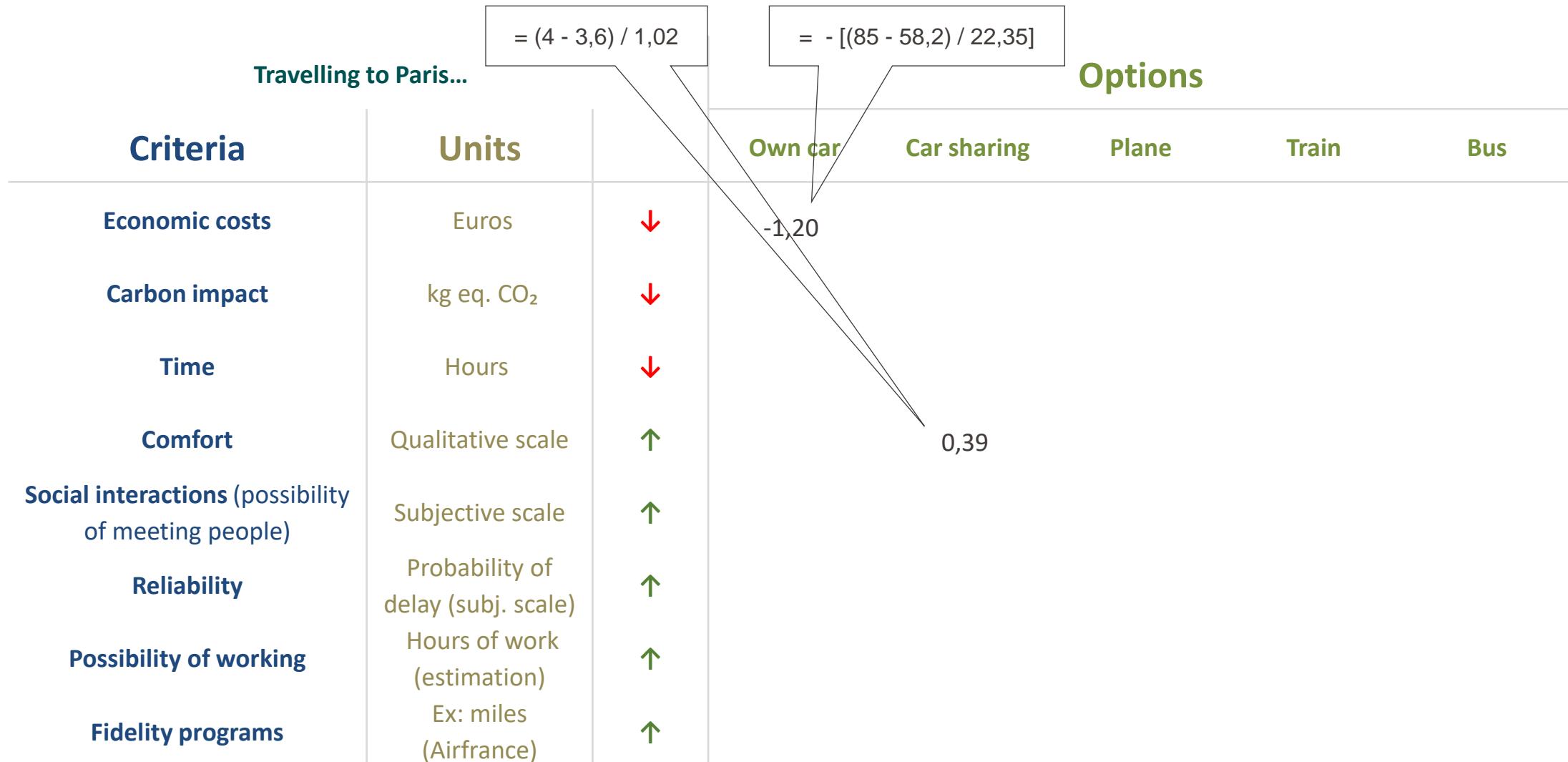
Very low	1
Low	2
Medium	3
High	4
Very high	5

Travelling to Paris...

Options

Criteria	Units	Options				
		Own car	Car sharing	Plane	Train	Bus
Economic costs	Euros	85	40	50	79	37
Carbon impact	kg eq. CO ₂	138.33	46.11	159.37	20.26	21.60
Time	Hours	5.5	5.5	1	3.25	7.25
Comfort	Qualitative scale	5	4	3	4	2
Social interactions (possibility of meeting people)	Subjective scale	1	7	3	5	3
Reliability	Probability of delay (subj. scale)	1	1	2	3	1
Possibility of working	Hours of work (estimation)	0	0	0.5	3	4
Fidelity programs	Ex: miles (Airfrance)	1	2	2	3	1

Goods/Bads


Likert Scales

1. Standard deviation from the mean

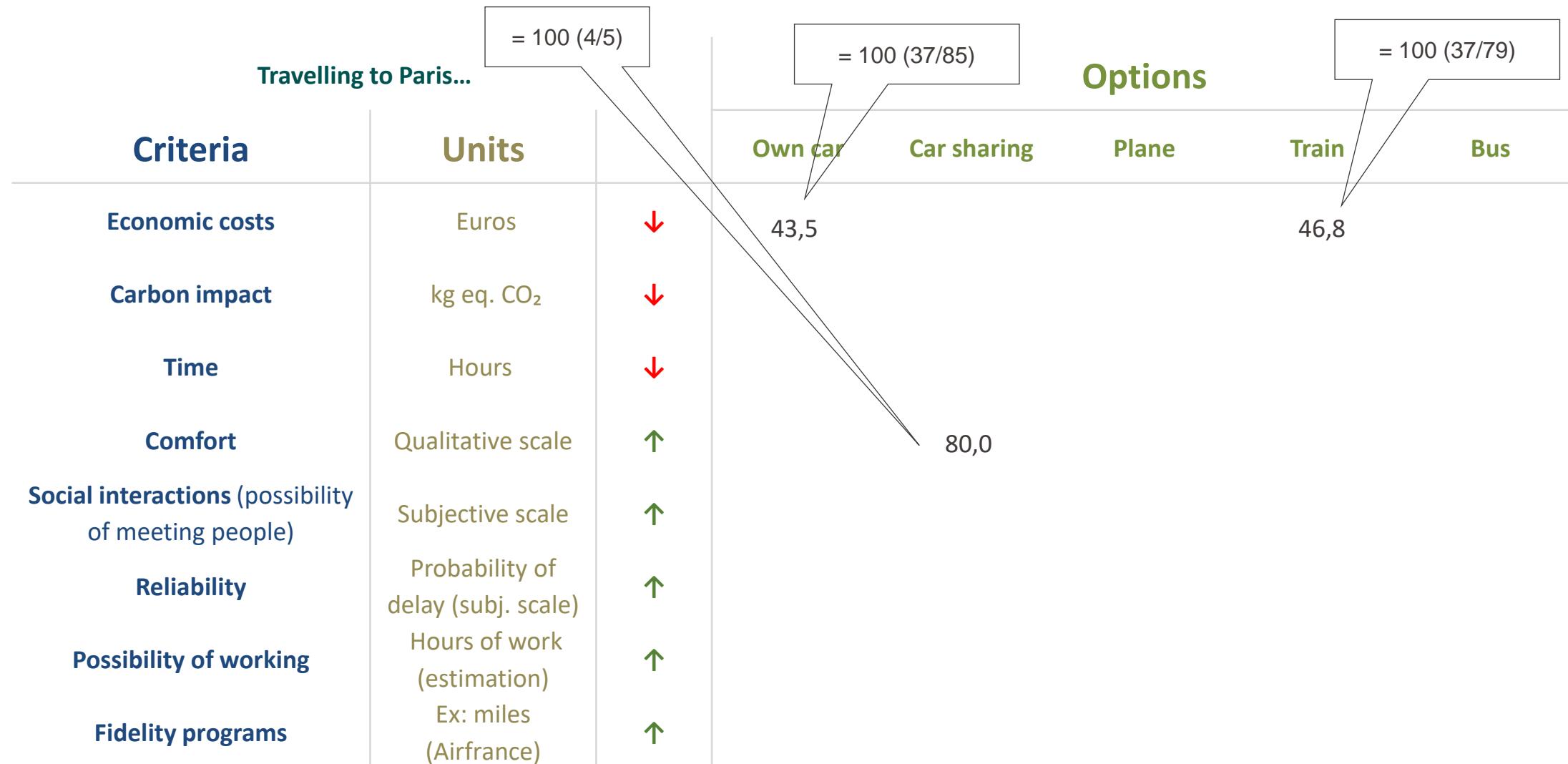
↑: $\frac{\text{actual value} - \text{mean value}}{\text{standard deviation}}$

30

↓: $-\frac{(\text{actual value} - \text{mean value})}{\text{standard deviation}}$

1. Standard deviation from the mean

↑: $\frac{\text{actual value} - \text{mean value}}{\text{standard deviation}}$


31

↓: $-\frac{\text{actual value} - \text{mean value}}{\text{standard deviation}}$

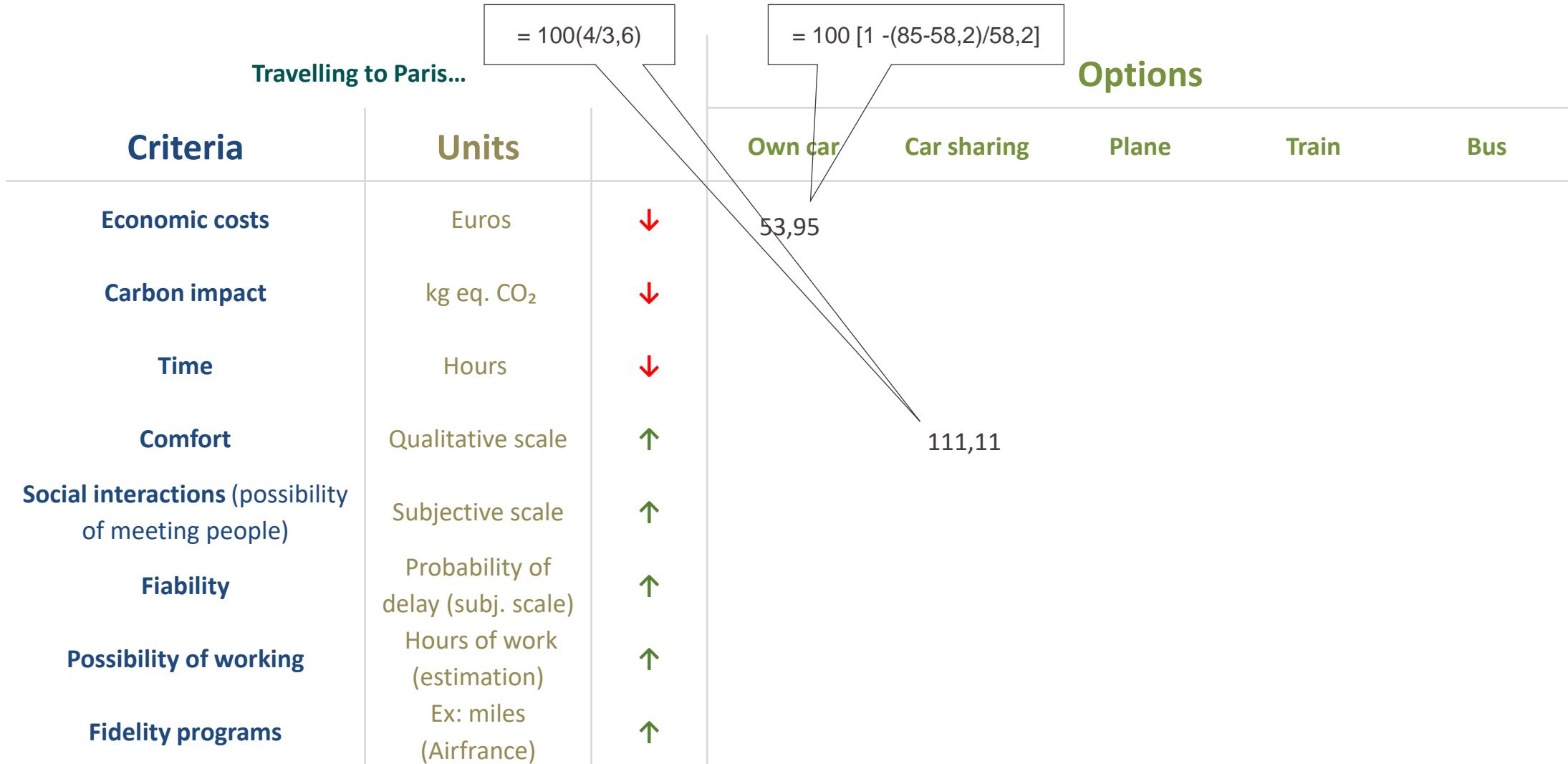
Travelling to Paris...		Options					
Criteria	Units						
Economic costs	Euros	↓	-1,20	0,81	0,37	-0,93	0,95
Carbon impact	kg eq. CO ₂	↓	-1,03	0,52	-1,38	0,95	0,93
Time	Hours	↓	-0,46	-0,46	1,62	0,58	-1,27
Comfort	Qualitative scale	↑	1,37	0,39	-0,59	0,39	-1,57
Social interactions (possibility of meeting people)	Subjective scale	↑	-1,37	1,57	-0,39	0,59	-0,39
Reliability	Probability of delay (subj. scale)	↑	-0,75	-0,75	0,50	1,75	-0,75
Possibility of working	Hours of work (estimation)	↑	-0,90	-0,90	-0,60	0,90	1,49
Fidelity programs	Ex: miles (Airfrance)	↑	-1,07	0,27	0,27	1,60	-1,07
			-5,40	1,45	-0,20	5,83	-1,68

2. Distance from the group leader

↑: 100 ($\frac{\text{actual value}}{\text{best value}}$) ↓: 100 ($\frac{\text{best value}}{\text{actual value}}$) 32

2. Distance from the group leader

↑: 100 ($\frac{\text{actual value}}{\text{best value}}$) ↓: 100 ($\frac{\text{best value}}{\text{actual value}}$) 33


Travelling to Paris...			Options					!
Criteria	Units		Own car	Car sharing	Plane	Train	Bus	
Economic costs	Euros	↓	43,5	92,5	74	46,8	100,0	
Carbon impact	kg eq. CO ₂	↓	14,6	43,9	12,7	100,0	93,8	
Time	Hours	↓	18,2	18,2	100,0	30,8	13,3	
Comfort	Qualitative scale	↑	100,0	80,0	60,0	80,0	40,0	
Social interactions (possibility of meeting people)	Subjective scale	↑	14,3	100,0	42,9	71,4	42,9	
Reliability	Probability of delay (subj. scale)	↑	33,3	33,3	66,7	100,0	33,3	
Possibility of working	Hours of work (estimation)	↑	0,0	0,0	12,5	75,0	100,0	
Fidelity programs	Ex: miles (Airfrance)	↑	33,3	66,7	66,7	100,0	33,3	
			257,2	434,6	435,5	604,0	456,6	

3. Distance from the mean

↑: $100 \left(\frac{\text{actual value}}{\text{mean value}} \right)$

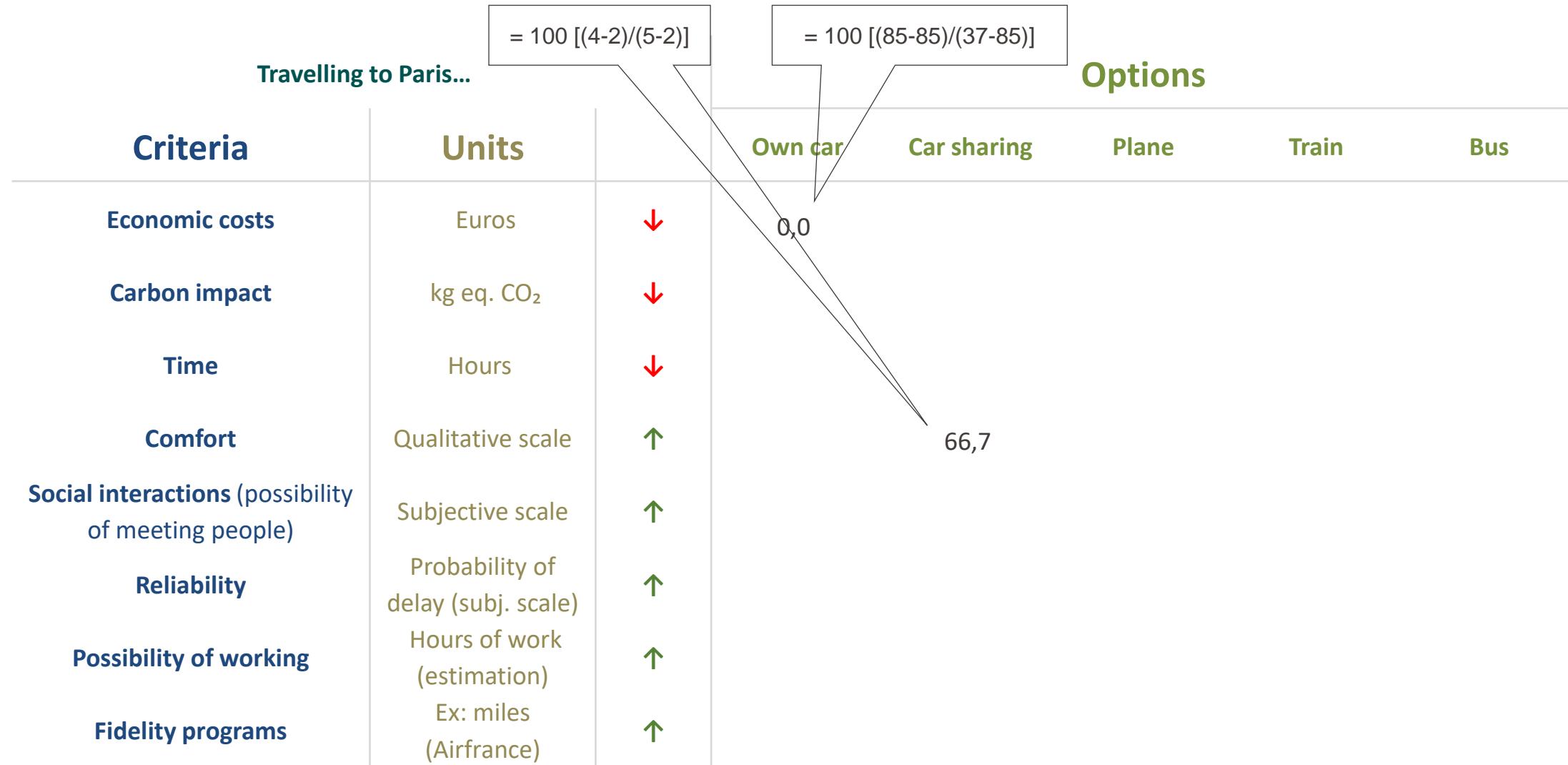
34

↓: $100 \left(1 - \frac{\text{actual value} - \text{mean value}}{\text{mean value}} \right)$

3. Distance from the mean

↑: 100 ($\frac{\text{actual value}}{\text{mean value}}$)

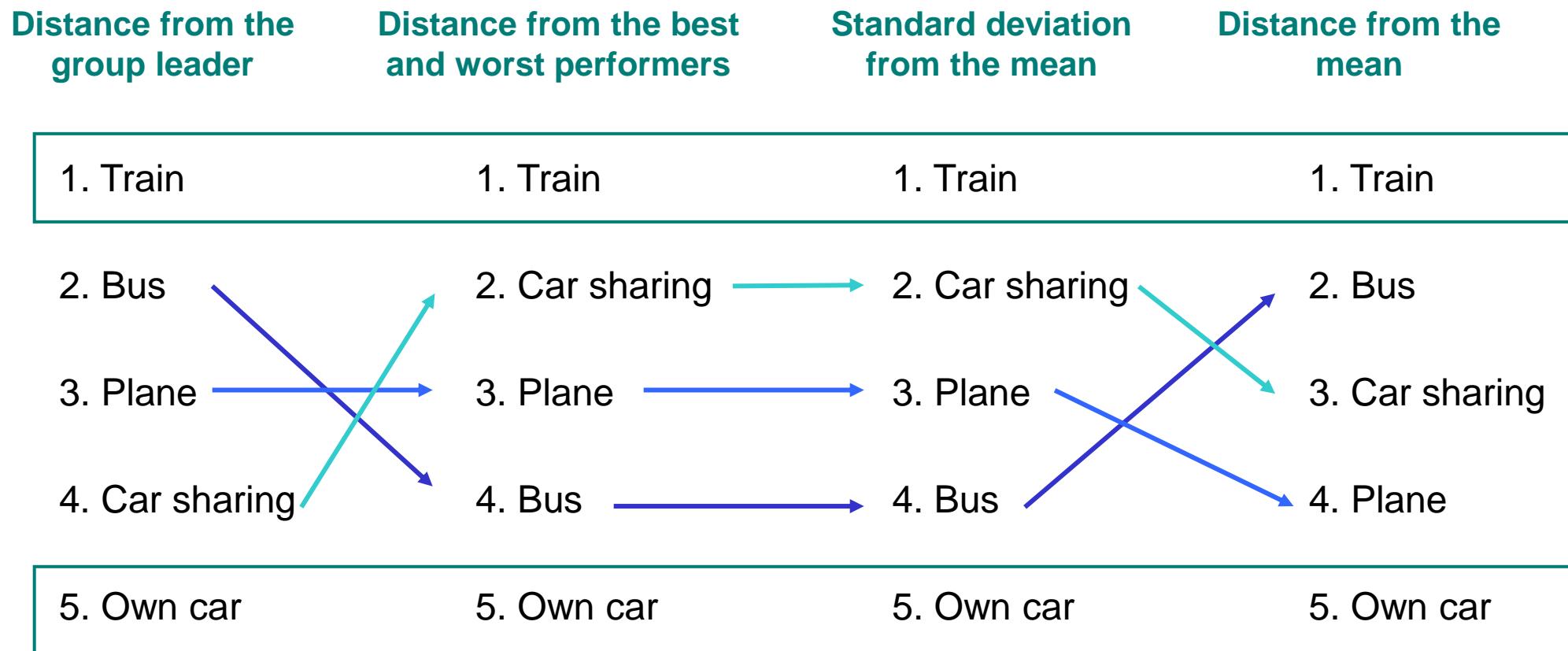
35


↓: 100 ($1 - \frac{\text{actual value} - \text{mean value}}{\text{mean value}}$)

Travelling to Paris...			Options				
Criteria	Units		Own car	Car sharing	Plane	Train	Bus
Economic costs	Euros	↓	53,95	131,27	114,09	64,26	136,43
Carbon impact	kg eq. CO ₂	↓	20,66	140,22	-6,61	173,73	172,00
Time	Hours	↓	77,78	77,78	177,78	127,78	38,89
Comfort	Qualitative scale	↑	138,89	111,11	83,33	111,11	55,56
Social interactions (possibility of meeting people)	Subjective scale	↑	26,32	184,21	78,95	131,58	78,95
Reliability	Probability of delay (subj. scale)	↑	62,50	62,50	125,00	187,50	62,50
Possibility of working	Hours of work (estimation)	↑	0,00	0,00	33,33	200,00	266,67
Fidelity programs	Ex: miles (Airfrance)	↑	55,56	111,11	111,11	166,67	55,56
			435,65	818,20	716,98	1162,63	866,54

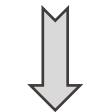
4. Distance from best and worst performers

$100 \left(\frac{\text{actual value} - \text{worst value}^{36}}{\text{best value} - \text{worst value}} \right)$



4. Distance from best and worst performers

$$100 \left(\frac{\text{actual value} - \text{worst value}^{37}}{\text{best value} - \text{worst value}} \right)$$


Travelling to Paris...			Options					!
Criteria	Units		Own car	Car sharing	Plane	Train	Bus	
Economic costs	Euros	↓	0,0	93,7	72,9	12,5	100,0	
Carbon impact	kg eq. CO ₂	↓	15,1	81,4	0,0	100,0	99,0	
Time	Hours	↓	30,8	30,8	100,0	65,4	0,0	
Comfort	Qualitative scale	↑	100,0	66,7	33,3	66,7	0,0	
Social interactions (possibility of meeting people)	Subjective scale	↑	0,0	100,0	33,3	66,7	33,3	
Reliability	Probability of delay (subj. scale)	↑	0,0	0,0	50,0	100,0	0,0	
Possibility of working	Hours of work (estimation)	↑	0,0	0,0	12,5	75,0	100,0	
Fidelity programs	Ex: miles (Airfrance)	↑	0,0	50,0	50,0	100,0	0,0	
			145,9	422,6	352,0	519,6	332,3	

Weighted sum methods

Travelling to Paris...			Options				
Criteria	Units	W_i	Own car	Car sharing	Plane	Train	Bus
Economic costs	Euros	↓	85 euros	40 euros	50 euros	79 euros	37 euros
Carbon impact	kg eq. CO ₂	↓	138.33 kg	46.11 kg	159.37 kg	20.26 kg	21.60 kg
Time	Hours	↓	5h30	5h30	1h	3h15	7h30
Comfort	Qualitative scale	↑	Very high	High	Medium	High	Low
Social interactions (possibility of meeting people)	Subjective scale	↑	1	7	3	5	3
Reliability	// Probability of delay	↑	+	+	++	+++	+
Possibility of working	Hours of work	↑	0h	0h	30min	3h	4h
Fidelity programs	Ex: miles	↑	Not possible	Easy	Easy	Very easy	Not possible

Weighted sum methods

Travelling to Paris...

Options

Criteria	Units	W_i	Own car	Car sharing	Plane	Train	Bus
Economic costs	Euros	⬇️ 0,25	85 euros	40 euros	50 euros	79 euros	37 euros
Carbon impact	kg eq. CO ₂	⬇️ 0,25	138.33 kg	46.11 kg	159.37 kg	20.26 kg	21.60 kg
Time	Hours	⬇️ 0,10	5h30	5h30	1h	3h15	7h30
Comfort	Qualitative scale	⬆️ 0,05	Very high	High	Medium	High	Low
Social interactions (possibility of meeting people)	Subjective scale	⬆️ 0,05	1	7	3	5	3
Reliability	// Probability of delay	⬆️ 0,05	+	+	++	+++	+
Possibility of working	Hours of work	⬆️ 0,20	0h	0h	30min	3h	4h
Fidelity programs	Ex: miles	⬆️ 0,05	Not possible	Easy	Easy	Very easy	Not possible

Weighted sum methods

(Normalization through “Distance from the group leader”)

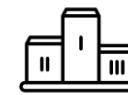
Travelling to Paris...

Criteria	Units	W_i	Options					Options
			Own car	Car sharing	Plane	Train	Bus	
Economic costs	Euros	↓ 0,25	10,88	23,13	18,50	11,70	25,00	
Carbon impact	kg eq. CO ₂	↓ 0,25	3,65	10,98	3,18	25,00	23,45	
Time	Hours	↓ 0,10	1,82	1,82	10,00	3,08	1,33	
Comfort	Qualitative scale	↑ 0,05	5,00	4,00	3,00	4,00	2,00	
Social interactions (possibility of meeting people)	Subjective scale	↑ 0,05	0,72	5,00	2,15	3,57	2,15	
Reliability	// Probability of delay	↑ 0,05	1,67	1,67	3,34	5,00	1,67	
Possibility of working	Hours of work	↑ 0,20	0,00	0,00	2,50	15,00	20,00	
Fidelity programs	Ex: miles	↑ 0,05	1,67	3,34	3,34	5,00	1,67	
			25,39	49,92	45,99	72,35	77,26	

Weighted sum methods... in brief

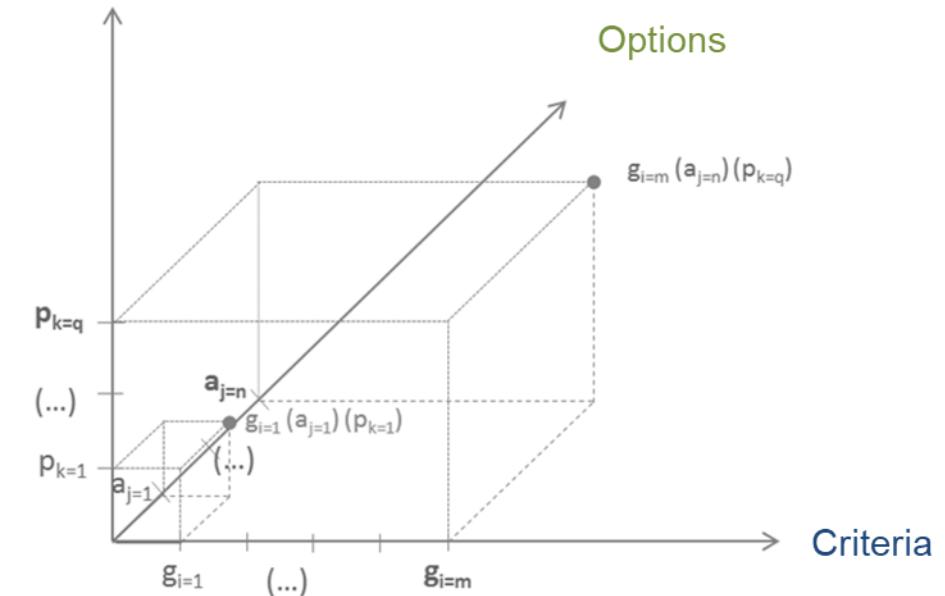
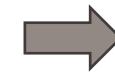
Strengths:

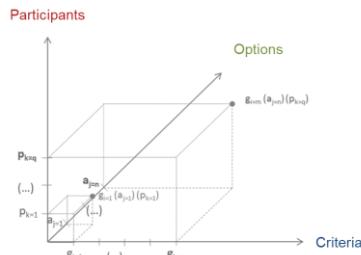
- (i) Simplicity.
- (ii) Transparency.



Limitations:

- (i) Total **compensability** between evaluative criteria.
- (ii) Subjectivity (weights!).



Personal values


Ranking

Adding participation to MCA

Criteria	Units	Options			
		$a_{j=1}$	$a_{j=2}$	(...)	$a_{j=n}$
$g_{i=1}$		$g_1(a_1)$	$g_1(a_2)$...	$g_1(a_n)$
$g_{i=2}$	
(...)	
$g_{i=m}$		$g_m(a_1)$	$g_m(a_2)$...	$g_m(a_n)$

PMCA: Participatory MCA

Social Multi-Criteria Evaluation (SMCE)

Munda (2004)

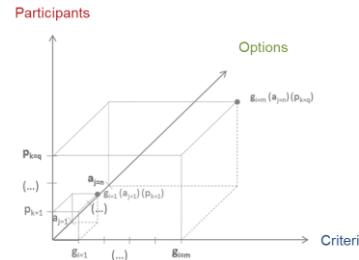
A first way to involve experts and the public : Differentiate roles

(Technical) Impact Matrix

set of options

Criteria	Units	Dir	Alternatives										
			A1	A2	A3	B1	B2	B3	B4	C1	C2	C3	C4
Employment	People/year	Max	0	31.5	41.8	97.77	97.77	97.77	97.77	79.11	83.11	76.86	83.11
Local incomes	Ordinal	Max	5 ⁺	4 ⁺	2 ⁺	3 ⁺	3 ⁺	3 ⁺	3 ⁺	1 ⁺	1 ⁺	1 ⁺	1 ⁺
Compatibility of activities	Ordinal	Max	5 ⁺	4 ⁺	1 ⁺	8 ⁺	7 ⁺	7 ⁺	6 ⁺	5 ⁺	3 ⁺	4 ⁺	2 ⁺
Cost of implementation	€	Min	0	2.442.330	6.186.624	4.925.819	4.925.819	4.925.819	4.925.819	5.325.347	5.325.347	5.325.347	5.325.347
Environmental disturbance	Ordinal	Min	3 ⁺	1 ⁺	3 ⁺	4 ⁺	4 ⁺	4 ⁺	4 ⁺	2 ⁺	2 ⁺	2 ⁺	2 ⁺
Impact on habitat and fauna	Synthetic index	Min	1327	1327	1455	1064	1200	1193	1202	1203	1311	1303	1289
Stability	Ordinal	Max	3 ⁺	3 ⁺	7 ⁺	9 ⁺	8 ⁺	6 ⁺	5 ⁺	4 ⁺	4 ⁺	4 ⁺	2 ⁺
Uncertainty	Qualitative	Min	Moderate	Moderate	Low	Very High	Very High	Very High	Very High	High	High	High	High

(Social) Equity Matrix


set of options

Social actors	A1	A2	A3	B1	B2	B3	B4	C1	C2	C3	C4
Bird watchers	Good	Good	Very good	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Bad	Moderate	Bad	More less bad
Fishers	Good	Good	Very good	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Very bad	Extremely bad	Extremely bad	More Less bad
Surfers	Good	Good	Very good	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Very bad	Extremely bad	Extremely bad	Bad
Busturia Council	Very bad	Very bad	Perfect	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Good	Extremely bad	Bad	Good
Murueta Council.	Extremely bad	Extremely bad	More less bad	More less good	Good	Very good	Perfect	Bad	Bad	Bad	Bad
Recreational boats	More less good	More less good	Good	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Perfect	Very bad	Extremely bad	Perfect
Shipyard workers	Very bad	Very good	Very bad	More less good	More less good	Mora less good	Very good	Moderate	Moderate	Moderate	Moderate
Head Coastal Management	Good	Very good	Perfect	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Bad	Bad	Bad	Bad
Env. Ministry (Reserve Director)	More less bad	Good	Very good	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Bad	Bad	Bad	Bad
Dune Recovery	Good	Good	Perfect	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Bad	Bad	Moderate	Moderate
Environmental Guides	More less good	Very good	Perfect	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Bad	Bad	Very Bad	More less bad
Arteaga Council	Moderate	Moderate	Very good	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Bad	Moderate	Bad	Moderate
Ekologia Tайлerra (NGO)	Bad	Very good	Perfect	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Extremely bad
Shipyard Owners	Extremely bad	Moderate	Extremely bad	More less good	More less good	More less good	Extremely bad				
Head Harbors	Good	Good	Good	Extremely bad	Extremely bad	Extremely bad	Extremely bad	Moderate	Moderate	Moderate	Moderate

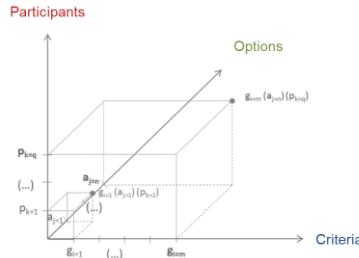
evaluative criteria

Participants

Garmendia et al. (2010)

Social Multi-Criteria Evaluation (SMCE)

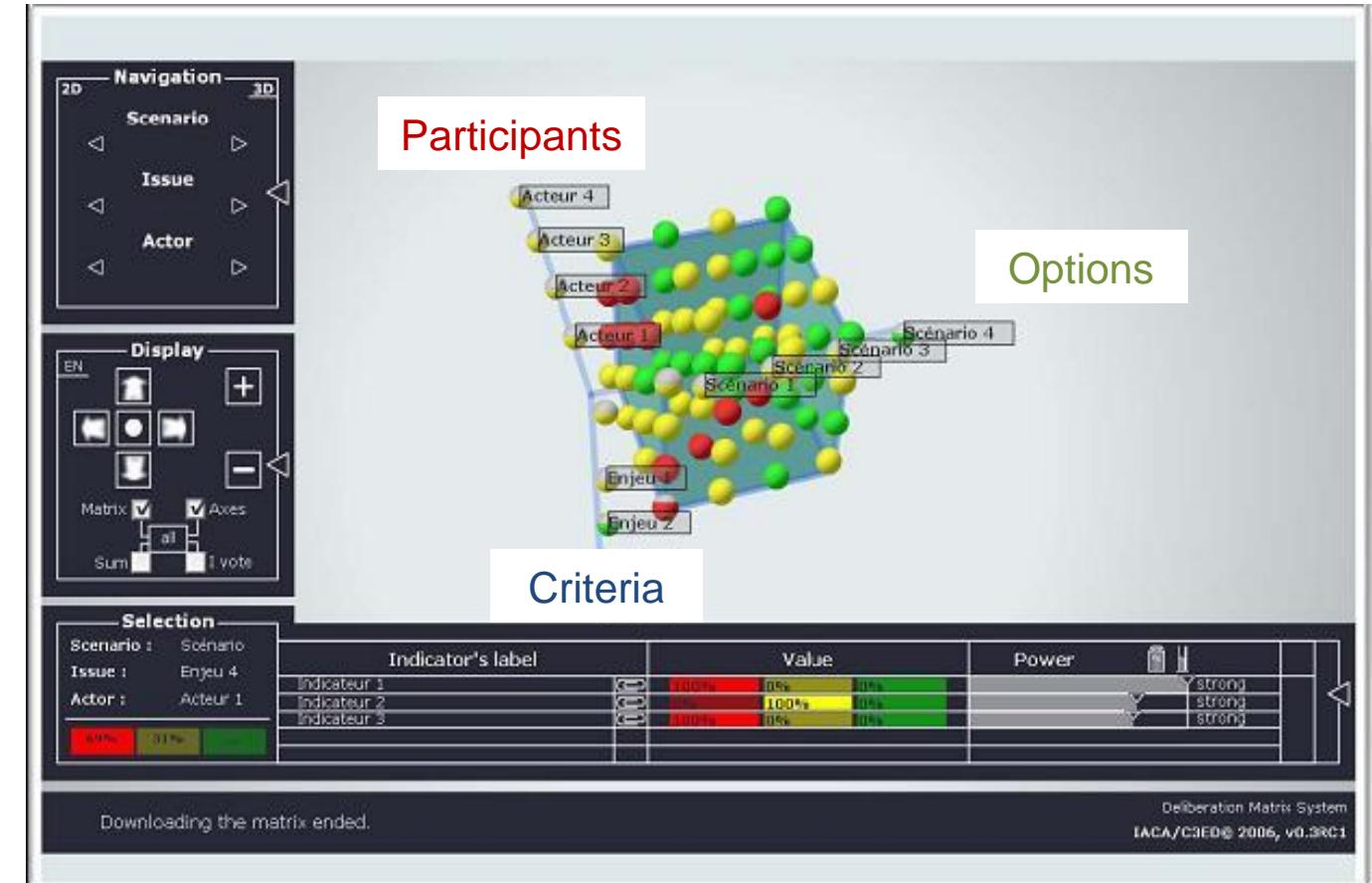
Munda (2004)

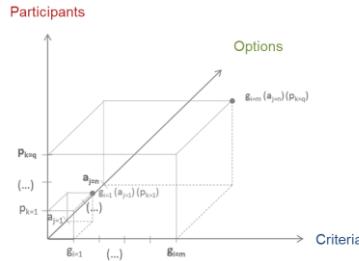

A first way to involve
experts and the public :
Differentiate roles

Inputs

Balance between

- **Objectivity and subjectivity**
- **Legitimacy and acceptability**


PMCA: Participatory MCA



InteGRAAL Approach

O'Connor (2006); O'Connor (2007)

A second way of involving both experts and the public:
ask everyone to assess the performance

InteGRAAL Approach

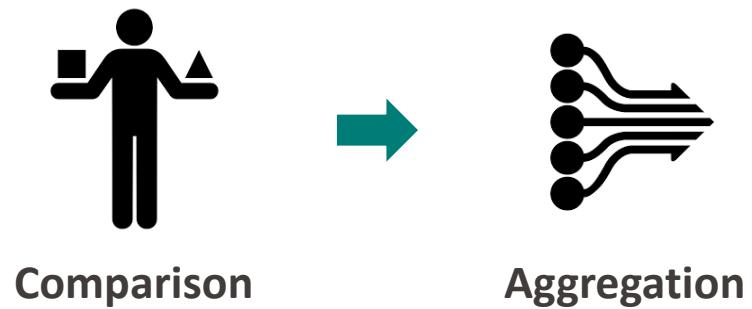
O'Connor (2006); O'Connor (2007)

A second way of involving both experts and the public:
ask everyone to assess the performance

Inputs

- **Inclusive participation:** Promotes a democratic approach
- **Perception variability:** Captures diverse opinions on performance + acceptability

But

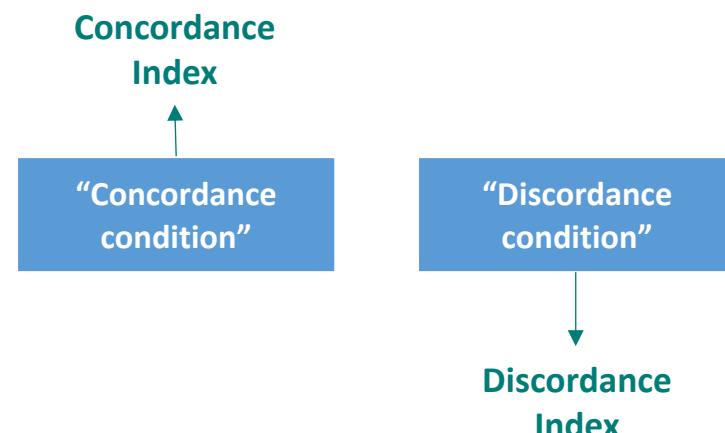

- **Bias risks**

Outranking methods

Outranking methods

Outranking methods involve **pairwise comparisons** of all alternative options according to each evaluative criterion

...In very simple terms, the logic behind is similar to a football championship


Outranking methods were mainly developed by **Bernard Roy** in 1970s (e.g. ELECTRE Methods). These methods try to overcome the limitations that are inherent to mono-criterion analysis (compensability, integration of qualitative data, etc.).

Since then, a plethora of methods have been created and subsequently developed: PROMETHEE, MELCHIOR, NAIADE, etc.

Outranking methods

In general terms, we can say that **option a “outranks” option b** (in formal language, we will write $a \mathbf{S} b$) when **TWO conditions** are fulfilled (ex : ELECTRE 1) :

- (i) a is as good as b according to a majority of evaluative criteria (considering their respective relative importance);
- (ii) When $a \mathbf{S} b$ is not fulfilled, the gap between the performance scores got by options a & b is not excessively important.

Outranking methods

- Concordance index : $c(a,b)$

$$\frac{\sum_{i \in (a \leq b)} w_i}{\sum_{i=1}^n w_i} \geq p$$

where **numerator** $\sum_{i \in (a \leq b)} w_i$ corresponds to the sum of weights given to those criteria for which relation $a \leq b$ is fulfilled,

and **denominator** $\sum_{i=1}^n w_i$ corresponds to the sum of all weights.

a **minimal threshold of “concordance”** p is then determined for $c(a,b)$. Option a outranks b only if: $c(a,b) \geq p$

Outranking methods

- Discordance index :

Through this second index, we verify that option a doesn't get too bad scores for those criteria in which it is not better than option b .

The idea behind this index is to limit the compensability between evaluative criteria.

$$g_i(a) - g_i(b) \leq v_i$$

... where $g_i(a)$ and $g_i(b)$ respectively express the performance that options a and b get according to criterion i ;

And v_i is a maximal threshold determined in order to both:

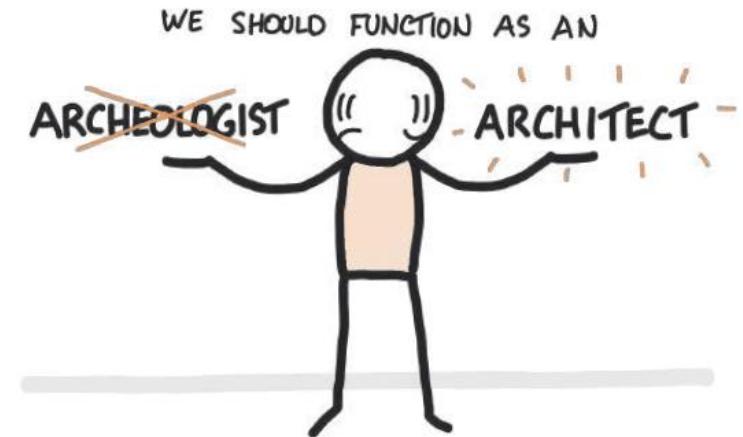
- (i) limit extreme cases of compensability; and
- (ii) warrant the possibility of introducing a veto positioning (*respect of minorities principle*).

Outranking methods

Strengths:

- (i) Outranking methods don't involve total compensability.
- (ii) Options may be seen as being incomparable to each other.

Limitations:


- (i) Unavoidable subjectivity when defining outranking relations and indexes.
- (ii) Complexity behind algorithms

Wrap-up

Tool selection is most often made by the analyst on the basis of value-laden principles.

Tool selection inevitably frames the assessment and its results!

Researchers and practitioners in the field of Sustainability Assessments should function not as “**archaeologists**”, carefully uncovering what is there, but as “**architects**”, working to build a defensible expression of value...

(Gregory et al. 1993 ; Vatn & Bromley 1994).

Wrap-up

... Some principles to take into account when selecting Sustainability Assessment tools:

- 1. Transparency**
- 2. Inclusiveness (from the very beginning...)**
- 3. Alignment with available resource and assessment goals**
- 4. Procedural rationality**